Using Tensorflow to detect objects - Solved

by: tclancy, 7 years ago

Last edited: 7 years ago

<Had wrong camera selected>

Trying to get sample working as shown but failing on feed_dict={image_tensor: image_np_expanded}). Code is as published with adjustments for directories etc. Error is as below, any clues greatly appreciated.

Traceback (most recent call last):
  File "C:Python36Sourcetensorflowtftest.py", line 142, in <module>
    feed_dict={image_tensor: image_np_expanded})
  File "C:Python36libsite-packagestensorflowpythonclientsession.py", line 895, in run
    run_metadata_ptr)
  File "C:Python36libsite-packagestensorflowpythonclientsession.py", line 1093, in _run
    np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
  File "C:Python36libsite-packagesnumpycorenumeric.py", line 531, in asarray
    return array(a, dtype, copy=False, order=order)
TypeError: int() argument must be a string, a bytes-like object or a number, not 'NoneType'



You must be logged in to post. Please login or register an account.



You should run your code with sudo, I saw this mistake 2 times and i tried to run it with sudo. everything is okey.

-vnrising 6 years ago
Last edited 6 years ago

You must be logged in to post. Please login or register an account.


Hi,

I'm getting the same error message and I've been trying to use all available solution over the internet but still no luck.

I hope that you could give me some advice.

Thanks in advance!

Error Log:
  File "<ipython-input-2-a9a0a1723642>", line 1, in <module>
    runfile('/home/noblesse/TF/models-master/research/object_detection/object_detection_tutorial_webcam.py', wdir='/home/noblesse/TF/models-master/research/object_detection')

  File "/home/noblesse/anaconda3/lib/python3.5/site-packages/spyder/utils/site/sitecustomize.py", line 705, in runfile
    execfile(filename, namespace)

  File "/home/noblesse/anaconda3/lib/python3.5/site-packages/spyder/utils/site/sitecustomize.py", line 102, in execfile
    exec(compile(f.read(), filename, 'exec'), namespace)

  File "/home/noblesse/TF/models-master/research/object_detection/object_detection_tutorial_webcam.py", line 194, in <module>
    output_dict = run_inference_for_single_image(image_np, detection_graph)

  File "/home/noblesse/TF/models-master/research/object_detection/object_detection_tutorial_webcam.py", line 175, in run_inference_for_single_image
    feed_dict={image_tensor: np.expand_dims(image, 0)})

  File "/home/noblesse/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 895, in run
    run_metadata_ptr)

  File "/home/noblesse/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1097, in _run
    np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)

  File "/home/noblesse/anaconda3/lib/python3.5/site-packages/numpy/core/numeric.py", line 501, in asarray
    return array(a, dtype, copy=False, order=order)

TypeError: int() argument must be a string, a bytes-like object or a number, not 'NoneType'




Code that I'm working with:


import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

import cv2

cap = cv2.VideoCapture(0)

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops

if tf.__version__ < '1.4.0':
  raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')


from utils import label_map_util

from utils import visualization_utils as vis_util


# # Model preparation

# ## Variables
#
# Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_FROZEN_GRAPH` to point to a new .pb file.  
#
# By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.

# In[ ]:


# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90


# ## Download Model

# In[ ]:


opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
  file_name = os.path.basename(file.name)
  if 'frozen_inference_graph.pb' in file_name:
    tar_file.extract(file, os.getcwd())


# ## Load a (frozen) Tensorflow model into memory.

# In[ ]:


detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.GraphDef()
  with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')


# ## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`.  Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine

# In[ ]:


label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)


# ## Helper code

# In[ ]:


def load_image_into_numpy_array(image):
  (im_width, im_height) = image.size
  return np.array(image.getdata()).reshape(
      (im_height, im_width, 3)).astype(np.uint8)


# # Detection

# In[ ]:


# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)


# In[ ]:


def run_inference_for_single_image(image, graph):
  with graph.as_default():
    with tf.Session() as sess:
      # Get handles to input and output tensors
      ops = tf.get_default_graph().get_operations()
      all_tensor_names = {output.name for op in ops for output in op.outputs}
      tensor_dict = {}
      for key in [
          'num_detections', 'detection_boxes', 'detection_scores',
          'detection_classes', 'detection_masks'
      ]:
        tensor_name = key + ':0'
        if tensor_name in all_tensor_names:
          tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
              tensor_name)
      if 'detection_masks' in tensor_dict:
        # The following processing is only for single image
        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
        # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
        real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
            detection_masks, detection_boxes, image.shape[0], image.shape[1])
        detection_masks_reframed = tf.cast(
            tf.greater(detection_masks_reframed, 0.5), tf.uint8)
        # Follow the convention by adding back the batch dimension
        tensor_dict['detection_masks'] = tf.expand_dims(
            detection_masks_reframed, 0)
      image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

      # Run inference
      output_dict = sess.run(tensor_dict,
                             feed_dict={image_tensor: np.expand_dims(image, 0)})

      # all outputs are float32 numpy arrays, so convert types as appropriate
      output_dict['num_detections'] = int(output_dict['num_detections'][0])
      output_dict['detection_classes'] = output_dict[
          'detection_classes'][0].astype(np.uint8)
      output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
      output_dict['detection_scores'] = output_dict['detection_scores'][0]
      if 'detection_masks' in output_dict:
        output_dict['detection_masks'] = output_dict['detection_masks'][0]
  return output_dict


# In[ ]:


while True:
    ret, image_np = cap.read()
    image_np_expanded = np.expand_dims(image_np, axis=0)
    output_dict = run_inference_for_single_image(image_np, detection_graph)
    vis_util.visualize_boxes_and_labels_on_image_array(
            image_np,
            output_dict['detection_boxes'],
            output_dict['detection_classes'],
            output_dict['detection_scores'],
            category_index,
            category_index,
            instance_masks=output_dict.get('detection_masks'),
            use_normalized_coordinates=True,
            line_thickness=8)
    cv2.imshow('image', cv2.resize(image_np, (800,600)))
    if cv2.waitKey(25) & 0xFF == ord('q'):
        cv2.destroyAllWindows()
        break
    





-Allan0018 6 years ago
Last edited 6 years ago

You must be logged in to post. Please login or register an account.

Not sure why sudo works. This issue for me was sometimes the video stream yielded nothing in which case
 ret, image_np = cap.read() 
ret will be false. My fix was to do
 if ret == True: 
then run inference

-fallenfate 6 years ago

You must be logged in to post. Please login or register an account.